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• MATHEMATICAL TOOLS.

• In this lecture we provide a brief exposition of the theory of tensor
products and decomposition theory.

• Tensor products are necessary to define quantum composite systems, to
define entangled density matrices.

• We remind that these concepts are indispensable for a definition of
correlated quantities!

• Decomposable theory is necessary to decompose a state into more simple
components.

• We begin with the definition of tensor product of linear spaces:
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• Definition 1. Let X and Y are linear spaces. We say that a form
ϕ : X × Y → C is bilinear if

ϕ(λ1x1 + λ2x2, λ3y1 + λ4y2) =

= λ1λ3ϕ(x1, y1) + λ1λ4ϕ(x1, y2) + λ2λ3ϕ(x2, y1) + λ2λ4ϕ(x2, y2)

where x1, x2 ∈ X, y1, y2 ∈ Y and λi ∈ C, here i = 1, ..., 4.

Let us denote the linear space of all such bilinear forms by B(X, Y ).

A simple tensor is a linear form x ⊗ y on the linear space B(X, Y ), i.e.
x ⊗ y ∈ B(X, Y )′, such that:

(x ⊗ y)(A) = A(x, y) (1)

for all A ∈ B(X, Y ).
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The algebraic tensor product of two linear spaces X and Y , X ⊙ Y ⊂
B(X, Y )′, is the set of all linear, finite, combinations of simple tensors.

A typical v ∈ X ⊙ Y is of the form:

v =

n
∑

i=1

λixi ⊗ yi (2)

where we emphasize that the decomposition given by (2) is not unique.
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• The above construction can be applied to Banach spaces X and Y .

• BUT, the algebraic tensor product of X, Y is not automatically a Banach
space.

• To obtain tensor product of Banach spaces which itself is a Banach space
one must define a norm on X ⊙ Y .

• On X ⊙ Y one can define various norms.

• It is natural to restrict oneself to norms satisfying: ‖x ⊗ y‖ = ‖x‖ ‖y‖.
Such norms are said to be cross-norms.

• There are exceptional cases, where the cross-norm is uniquely defined.

• The most important case for Physics is that one when Banach spaces X

and Y are Hilbert spaces and we want X ⊗Y to be also a Hilbert space.
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• However, in general, there are plenty of cross-norms on X ⊙ Y . To
illustrate this phenomenon we give:

• Example 2. Operator norm.

Let Hi be a Hilbert space and B(Hi) denote the space of all bounded
linear operators on Hi (for i = 1, 2). Then the operator norm on
B(H1) ⊙ B(H2) ⊆ B(H1 ⊗ H2) is taken from that on B(H1 ⊗ H2).
It has the cross-norm property. The closure of B(H1) ⊙ B(H2) with
respect to this operator norm will be denoted by B(H1) ⊗ B(H2) and
called the tensor product of B(H1) and B(H2).

• We now define another important cross-norm on X ⊙ Y :
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Example 3. Projective norm.

Let X and Y be Banach spaces. The projective norm π on X ⊙ Y is
defined by

π(v) = inf

{

n
∑

i=1

‖xi‖ ‖yi‖ : v =
n

∑

i=1

xi ⊗ yi

}

(3)

The completion of X ⊙ Y with respect to the norm π is called the
projective tensor product and is denoted as X ⊗π Y .

• The importance of projective norm follows from the old Grothendieck
result.
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• Theorem 4. Let X and Y be Banach spaces. Then, there exists
an isometric isomorphism between the Banach space B(X, Y ) of all
bounded bilinear functionals on X × Y and the space (X ⊗π Y )∗ of all
continuous linear functionals on (X ⊗π Y ) given by

ϕ̂(x ⊗ y) = ϕ(x, y) (4)

where ϕ ∈ B(X, Y ), x ∈ X, and y ∈ Y .

• Moreover, the similar norm the operator space projective norm will be
crucial in definition of entangled density matrices.

• This will follow from the following result:
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• Theorem 5. Let M ⊆ B(H) and N ⊆ B(K) be two von Neumann
algebras. Denote by M∗ the predual of M, i.e. such Banach space that
(M∗)

∗ is isomorphic to M, i.e. (M∗)
∗ ∼= M. There is an isometry

(M ⊗ N)∗ = M∗ ⊗π N∗ (5)

where the von Neumann algebra M ⊗ N is the weak closure of the set
{A ⊗ B; A ∈ M, B ∈ N}. In particular,

B(H⊗K)∗ = B(H)∗ ⊗π B(K)∗. (6)

• It is important to note that the closure in the above theorem is taken
with respect to the operator space projective norm! and the operator
space projective norm is, in general, different from the projective norm
(see Effros, Ruan book).
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• The projective tensor product gains in interest if we realize that Rules
1− 3 and 5 provide a nice example of application of this tensor product.

• To see his, let A stand for algebra of observables.

• We assume A is either a C∗-algebra or (when speaking about normal
states) a W ∗-algebra. Obviously, always, it is a Banach space.

• The set of all states S is a subset of A∗ (and A∗ is also a Banach space)
while the collection of all density matrices gives a subset of A∗ ( A∗ is
the predual of A, so it is also a Banach space).

IFTiA Gdańsk University – Poland 9



Quantum correlations IV. Gdansk-Houston, March, 2015

• The Born interpretation, cf Rule 3, implies

A × S ∋ 〈A, ϕ〉 → ϕ(A) ∈ C (7)

where ϕ(A) is interpreted as the expectation value of A at the state
ϕ ∈ S.

• Thus the Born’s interpretation of Quantum Mechanics gives an element
of B(A, A∗) since the form Â(·, ·) on A × S defined by (7) can be
extended to the bilinear continuous form on A × A∗ (or on A × A∗, if
one was interested in density matrices only).

• Clearly, (7) provides only one specific form on A × A∗ (or on A × A∗

respectively).
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• However, it is crucial to note that Rule 3 combined with Rule 5 leads to
the following recipe:

A × S ∋ 〈A, ϕ〉 → ϕ(Tt(A)) ∈ C (8)

where Tt ∈ {Tt} is a dynamical map. Obviously, in this way we are
getting the large collection of bilinear, continuous forms.

• On the other hand, Theorem 4 says

B(A, A∗) ∼= (A ⊗π A∗)∗ (9)

• If the set of states S consists of normal states only (so, for example, the
collection of density matrices in Dirac’s formalism of quantum mechanics
is relevant) then one can rewrite (9) as

B(A, A∗) ∼= (A ⊗π A∗)
∗ (10)

IFTiA Gdańsk University – Poland 11



Quantum correlations IV. Gdansk-Houston, March, 2015

• Next, we use the another identification (again due to Grothendieck
results)

L(A, A) ∼= (A ⊗π A∗)
∗, (11)

where L(A, A) stands for the set of all bounded linear maps from A to
A,

• It is not difficult to see that

B(A, A∗) ∼= L(A, A) (12)

• Therefore, (8) gives not a large collection of continuous forms - It gives

the whole set of bilinear continuous forms on A×A∗, which are also
positive, i.e. ϕ(Tt(A)) ≥ 0 if A ≥ 0 and ϕ ≥ 0.

• In other words, Grothendieck theory of tensor products is perfectly

compatible with the quantization rules of quantum mechanics.
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• Few words on the theory of tensor product of C*-algebras.

• Let A1 and A2 be C*-algebras with unit. Obviously, A1 ⊙ A2 can be
constructed as before since Ai, i = 1, 2, is also a Banach space).

• As we wish to get a tensor product which is still a C*-algebra, we must
define a C*-norm α on A1 ⊙A2 i.e. a norm such that α(x∗x) = (α(x))2

and α(xy) ≤ α(x)α(y).

• Again, in general, there are plenty of such norms.

• As usually we will consider concrete C∗-algebras. Thus, we will use the
operator norm. Consequently, the completion of the algebraic tensor
product A1 ⊙ A2 with respect to the operator norm will be denoted by
A1 ⊗ A2.
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• In some cases (for so called nuclear C*-algebras) the tensor product is
uniquely defined.

• Nice examples of such algebras are provided by abelian algebras A (again,
classical systems offer a great simplification) as well as Mn(C), where
n < ∞.

• We recall that toy models of quantum theory are based on models such
that Mn(C), where n < ∞.
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• Decomposition theory.

• Contrary to the classical case, a state of a quantum system can be
decomposed in many ways.

• The general idea of decomposition theory, applied to a convex compact
subset K of states, K ⊆ S, is to express the complex structure of K as
a sum of more simpler compounds.

• To this end, we wish to find a measure µ which is supported by a
distinguished subset of states, for example by extremal points Ext(K)
of K. Then, we look for a decomposition of a state ω ∈ K in the form

ω(A) =

∫

K

ω′(A)dµ(ω′) (13)

where A is an observable.
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• We recall that for the classical case (we have seen this in the second
lecture), Dirac’s measures (so pure states) have played an important role
in arguments leading to general form of two points correlation function.

• This explains why the case of a measure µ supported by the subset
Ext(K) is so important!

• The above formula (13) can be rewritten as

Â(ω) =

∫

K

Â(ω′)dµ(ω′). (14)

• This indicates that, in fact, we are studying the barycentric
decompositions.
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• The barycenter of a measure µ is defined as

Definition 6. Let K be a compact convex subspace in locally compact
space X and let µ be a positive non-zero measure on K. We say that

b(µ) = µ (K)
−1

∫

K

xdµ(x) (15)

is a barycenter of a measure µ, where the integral is understood in the
weak sense.
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• We will need:

• Proposition 7. Let A be a C*-algebra (not necessary with unit) and
let BA denote positive linear functionals on A with norm less than or
equal to one. Then BA is a convex, weakly ∗-compact subset of the dual
A∗ whose extremal points are pure states.

• and also:

Proposition 8. The set of states SA is convex but it is weakly ∗-
compact if and only if A has a unit. In the latter case the extreme points
of SA are pure states. Thus, it follows from Krein-Milman theorem, that
SA = conv(SP

A ) where S
p

A stands for the set of all pure states in SA.
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• Let K be a compact set.

• Definition 9. 1. Let M+(K) denote the set of all positive (Radon)
measures on K, (K is a compact set). The support of measure
µ ∈ M+(K) is defined as the smallest closed subset C of K such that
µ(C) = µ(K).

2. The measure µ is said to be pseudosupported by an arbitrary set
A ⊆ K if µ(B) = 0 for all Baire sets B such that B ∩ A = ∅

• Here, Baire sets can be considered as elements of such σ-algebra F ,
which is the smallest σ-algebra such that all continuous functions are
measurable.

• Warning! One can find a probability measure µ and a Borel subset A

such that µ is pseudosupported by A, but µ(A) = 0.
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• Existence.

• Let K be a compact convex set, and M1(K) be the set of positive
normalized, i.e probability, measures on K, which is a (weakly-∗)
compact.

• The barycenter b(µ) of a general measure µ exists.

• Proposition 10. For a µ ∈ M1(K) there exists a unique point b(µ) in
the set K such that

f(b(µ)) =

∫

K

f(ω′)dµ(ω′) (16)

for all affine, continuous, real-valued functions f on K.
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• There are nontrivial decompositions.

• Proposition 11. Let K be a convex compact subset of a locally convex
Hausdorff space. The following two conditions are equivalent:

1. each ω ∈ K is the barycenter of a unique maximal measure,
2. K is a simplex, what is equivalent that a system is a classical system!

(what was discussed in the first lecture).

• Thus, for quantum systems, a non pure states has nontrivial
decompositions.

• Decompositions of states were considered in Quantum Field Theory and
Quantum Statistical Physics in 70’ of last century.
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• To avoid measure theoretical problems one can assume:

• Definition 12. Ruelle’s SC condition

Let A be a C*-algebra with unit, and F a subset of the state space SA.
F is said to satisfy separability condition (SC) if there exists a sequence
of sub-C*-algebras {An} such that

⋃

∞

n=1
An is dense in A and each An

contains a two-sided, closed, separable ideal In such that

F = {ω, ω ∈ SA, ‖ω|In‖ = 1, n ≥ 1} .

• This condition is satisfied in most physical models, for example in all
models discussed in the last lecture.
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• The main result of the second part of the lecture.

• We need:

• Definition 13. A face F of a compact convex set K is defined to be a
convex subset of K with the following property: if ω ∈ F can be written
as ω = λ1ω1 + λ2ω2 where λi ≥ 0, i = 1, 2, λ1 + λ2 = 1, ω1 and ω2 are
in K then we have ωi ∈ F (i = 1, 2).

• Example 14. 1. One point face, F = {ω} ⊂ K is an extremal point of
K.

2. Let M be a von Neumann algebra. Then Sn
M is a face in SM.

• The promised result is:
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• Theorem 15. Let A be a C*-algebra with identity and ω be a state
over A. There are measures µ (determined by structures induced by the
state ω) over SA such that any µ is pseudosupported by pure states
Ext(SA). Moreover, if additionally ω is in a face F of SA satisfying the
separability condition SC then the set of extremal points Ext(F ) of F ,
is a Baire subset of the pure states on A and

µ(Ext(F )) = 1.

• To comment the theorem we make:
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• Remark 16. 1. Obviously, the results stated in above Theorem are
significant for non trivial faces, i.e. when F is consisting of more than
one point.

2. Theorem 15 says that the strategy described at the beginning of this
section is working, i.e. a state ω ∈ F can be decomposed into pure
states.

3. Measures appearing in Theorem 15 are of very special type. They are
in the class of so called orthogonal measures.
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